HOW TO FORMAT INPUT FILE

- Input file is composed of several spreadsheets, one for each marker.
- Topmost number of A column is the number of marker alleles. The rest of the column serves for identification purposes only.
- Columns B and C reflect population groups, and populations within each group, respectively.
- Column D contains the number of individuals of each population.
- Columns E onwards contain the name of each allele (heading) and its frequency in every population.
- Therefore, the total number of columns for each marker must be A1+4.

	A	В	С		D	E	F	G	Н	-	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Y
	20	GROUP	POPULATION		No.	136	140	144	145	148	149	152	153	156	157	160	161	163	164	167	168	172	173	176	180	
	1	Africa	Kenyan Bantu		38	0,026	0	0	0,053	0,053	0	0,079	0	0,079	0	0,158	0	0	0,316	0	0,158	0,026	0,026	0,026	0	
	2	Africa	San	_	14	0	0	0	0	0,071	0	0,071	0	0,286	0	0,143	0	0	0,214	0	0	0,143	0	0,072	0	
	3	Africa	Biaka	_	68	0	0,059	0,044	0	0,029	0,088	0,029	0	0,044	0,015	0,176	0,044	0	0,221	0	0,015	0,206	0	0,03	0	
	4	Africa	Mbuti	_	26	0	0	0	0	0,115	0,038	0,038	0	0,232	0	0,231	0	0	0,115	0	0,038	0,038	0	0,155	0	
	5	Africa	Yoruba		50	0	0	0,02	0	0,02	0	0,04	0	0,1	0	0,36	0	0	0,26	0	0,12	0,04	0	0,04	0	
	6	Africa	Mandenka		46	0,043	0	0,043	0,043	0,022	0	0,065	0	0,109	0	0,283	0	0	0,196	0	0,152	0,044	0	0	0	
	7	ME	Mozabite		58	0	0	0	0	0	0	0,224	0	0,103	0	0,241	0	0	0,207	0	0,103	0,087	0	0,035	0	
	8	ME	Bedouin		98	0	0,01	0,041	0	0,102	0,01	0,031	0	0,163	0	0,276	0	0	0,163	0,02	0,123	0,051	0	0,01	0	
	9	ME	Druze	_	46	0	0	0,01	0	0,146	0	0,094	0	0,292	0	0,135	0	0,01	0,188	0,01	0,073	0,021	0	0,021	0	
_	10	ME	Palestinian		102	0	0	0,01	0	0,225	0	0,108	0	0,108	0	0,167	0	0	0,137	0	0,137	0,098	0	0,01	0	
_	11	Europe	Adygei	_	32	0	0	0,031	0	0,188	0	0,156	0	0,188	0	0,125	0	0	0,125	0	0,124	0,063	0	0	0	
_	12	Europe	Basque		46	0	0	0,043	0	0,152	0	0,065	0	0,13	0	0,109	0	0	0,196	0	0,283	0,022	0	0	0	
_	13	Europe	French		52	0	0	0,019	0	0,115	0	0,173	0	0,173	0	0,154	0	0	0,154	0	0,135	0,077	0	0	0	
_	14	Europe	Italians	_	28	0	0	0	0	0,25	0	0,036	0	0,25	0	0,107	0	0	0,25	0	0,107	0	0	0	0	
	15	Europe	Tuscan		16	0	0	0	0	0,187	0	0,25	0	0	0	0,188	0	0	0,188	0	0,187	0	0	0	0	
_	16	Europe	Orcadian		32	0	0	0	0	0,062	0	0,156	0	0,125	0	0,281	0	0	0,125	0	0,188	0,063	0	0	0	
	17	Europe	Russians		50	0	0	0,06	0	0,12	0	0,12	0	0,1	0	0,28	0	0	0,2	0	0,1	0	0	0,02	0	1
_	18	Europe	Sardinian		46	0	0	0,022	0	0,108	0	0,261	0	0,109	0	0,152	0	0	0,152	0	0,174	0,022	0	0	0	
_		S Asia	Burusho		50	0	0	0,04	0	0,08	0	0,18	0	0,06	0	0,14	0	0	0,18	0	0,24	0,08	0	0	0	
	20	S Asia	Kalash		50	0	0	0	0	0,24	0	0,14	0	0,1	0	0,14	0	0	0,08	0	0	0,14	0	0,14	0,02	
	21	S Asia	Pashtun		50	0	0	0,06	0	0,2	0	0,06	0	0,08	0	0,28	0	0	0,22	0	0,04	0,06	0	0	0	
_	22	S Asia	Balochi		50	0	0	0,04	0	0,24	0	0,06	0	0,16	0	0,12	0	0	0,08	0	0,16	0,12	0	0,02	0	
	23	S Asia	Makrani		50	0	0	0,08	0	0,16	0	0,02	0	0,26	0	0,14	0	0	0,22	0	0,1	0,02	0	0	0	
	24	S Asia	Brahui		50	0	0	0,06	0,02	0,1	0	0,12	0	0,24	0	0,16	0	0	0,14	0	0,14	0,02	0	0	0	
	25	S Asia	Hazara		50	0	0	0	0	0,022	0	0,152	0	0,087	0	0,283	0	0	0,217	0	0,174	0,065	0	0	0	
	26	S Asia	Sindhi		50	0	0	0	0	0,22	0	0,04	0	0,1	0	0,2	0	0	0,24	0	0,1	0,06	0	0,04	0	
	27	S Asia	Uyghur		20	0	0	0	0	0,2	0	0	0	0,2	0	0,25	0	0	0,15	0	0,15	0,05	0	0	0	
	28	E Asia	Dai		20	0	0	0	0	0,05	0	0,15	0	0,25	0	0,2	0	0	0,25	0	0,05	0	0	0,05	0	
1	29	E Asia	Daur		16	0	0	0	0	0,25	0	0,062	0	0,25	0	0,188	0	0	0,188	0	0,062	0	0	0	0	
	30	E Asia	Han		88	0	0	0,012	0	0,045	0	0,045	0	0,239	0	0,148	0	0	0,318	0	0,17	0,023	0	0	0	
	31	E Asia	Hezhe		16	0	0	0	0	0,25	0	0,25	0	0	0	0	0	0	0,5	0	0	0	0	0	0	
	32	E Asia	Japanese		64	0	0	0,063	0	0,094	0	0,016	0,015	0,234	0	0,141	0	0	0,25	0	0,172	0	0	0,015	0	
	33	E Asia	Lahu		20	0	0	0,1	0	0,05	0	0,15	0	0,05	0	0,1	0	0	0,4	0	0,1	0,05	0	0	0	
	34	E Asia	Miao		16	0	0	0	0	0,1	0	0,1	0	0,25	0	0,25	0	0	0,2	0	0,05	0,05	0	0	0	
	35	S Asia	Mongolian		20	0	0	0	0	0,05	0	0,05	0	0,25	0	0,2	0	0	0,25	0	0,2	0	0	0	0	
_	36	E Asia	Naxi		20	0	0	0	0	0,188	0	0	0	0,375	0	0,125	0	0	0,125	0	0,187	0	0	0	0	
	37	E Asia	Orogen		20	0	0	0	0	0,15	0	0,05	0	0,05	0	0,4	0	0	0,1	0	0,1	0,15	0	0	0	
	38	E Asia	She		20	0	0	0	0	0	0	0,05	0	0,15	0	0,4	0	0	0,2	0	0,05	0,05	0	0,1	0	
_	39	E Asia	Tu		20	0	0	0	0	0,1	0	0,05	0	0	0	0,2	0	0	0,3	0	0,15	0,15	0	0,05	0	
	40	E Asia	Tujia		18	0	0	0	0	0,111	0	0,055	0	0,278	0	0,167	0	0	0,222	0	0,167	0	0	0	0	
	41	E Asia	Xibe		20	0	0	0	0	0	0	0,111	0	0,167	0	0,167	0	0	0,444	0	0,111	0	0	0	0	
_	42	E Asia	Yi		20	0	0	0	0	0,05	0	0,1	0	0,35	0	0,2	0	0	0,2	0	0,05	0,05	0	0	0	
_	43	E Asia	Cambodian		22	0	0	0	0	0,136	0	0	0	0	0	0,227	0	0	0,455	0	0,092	0,045	0	0,045	0	
	44	E Asia	Yakut		50	0	0	0,02	0	0,22	0	0,02	0	0,08	0	0,2	0	0	0,34	0	0,12	0	0	0	0	
	45	Oceania	Bourgainvilia		44	0,114	0	0	0	0	0	0	0,068	0,204	0	0,204	0	0	0,182	0	0,114	0	0	0,114	0	
	46	Oceania	Papuan New Guinean		34	0	0	0	0	0,059	0	0,029	0	0,118	0	0,059	0	0	0,294	0	0,324	0,117	0	0	0	
_	47	America	Pima, Mexico		48	0	0	0	0	0,125	0	0,167	0	0,042	0	0,271	0	0	0,167	0	0,146	0,082	0	0	0	
_	48	America	Maya, Yucatan		50	0	0	0	0	0,08	0	0,1	0	0,16	0	0,2	0	0	0,24	0	0,16	0,06	0	0	0	
	49	America	Colombian		26	0	0	0	0	0,308	0	0,192	0	0	0	0,077	0	0	0,231	0	0,038	0,154	0	0	0	
	50	America	Karitiana		48	0	0	0	0	0,042	0	0,083	0	0,042	0	0,188	0	0	0,229	0	0,271	0,063	0	0,082	0	
	51	America	Surui		40	0	0	0	0	0	0	0	0	0	0	0,175	0	0	0,75	0	0,075	0	0	0	0	
_																										

HOW TO FORMAT PROFILE TO CLASSIFY

Marker information is separated by slashes, both alleles of each marker by commas. Uncalled alleles are represented by n or N.

For the example file (51 populations within 7 groups), marker names are: D1S1679, D2S427, D3S2406, D3S4545, D5S1457, D7S2201, D9S1118, D11S1304, D12S297, D14S1426, D15S822, D21S1432.

Therefore, a possible profile would be: 163,152/251,243/294,343/192,233/103,119/101,97/157,143/192,172/241,245/150,N/310,246/140,131.

HOW TO PROCEED

- Input number of populations, input population spreadsheet document, and click on the "next step" button.
- You will then be presented with data tables for all markers. Have a
 attentive look at the information that's been read. If you agree
 with what you see, click on "next step" to input the profile to
 classify.
- Then click on "next step" to obtain the desired classification.